The Immunogenicity of two leading Malaria Vaccine Candidates Delivered as mRNA-LNP Vaccines

Medical Life Sciences
Feb 13, 2023

The Immunogenicity of two leading Malaria Vaccine Candidates Delivered as mRNA-LNP Vaccines


Background

Malaria, caused by the parasite Plasmodium falciparum, is a fatal disease claiming close to 627,000 lives per year worldwide. There is an urgent need to develop vaccines for the eradication of malaria.

The malaria-causal parasite has a complex life cycle presenting multiple stages, each of which female anopheline mosquitoes could ingest during blood feeding, leading to P. falciparum transmission. For instance, if an infected Anopheles mosquito starts the malaria infection by injecting P. falciparum sporozoites into the host, which invades its hepatocytes resulting in a blood-stage infection.

Thus, malaria vaccine development has focused on antigens expressed during various stages of its life cycle. Any transmission-blocking response (TBR) by a vaccine (TBV) intervenes with both sexual- and mosquito stages is crucial in malaria eradication efforts.

About the study

In the present study, researchers assessed the antibody responses to Pfs25 and PfCSP separately and in combination using a mouse model. First, they vaccinated female Balb/c mice with three, 10, and 30 μg doses of Pfs25 mRNA-LNP and evaluated the elicited antibody responses. Likewise, they assessed the antibody responses elicited by the PfCSP mRNA-LNP vaccine in mice at similar dosages.